Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Melanie Rademeyer

School of Pure and Applied Chemistry, University of KwaZulu-Natal, Durban 4041, South Africa

Correspondence e-mail:
rademeyerm@ukzn.ac.za

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.041$
$w R$ factor $=0.110$
Data-to-parameter ratio $=31.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Dianilinediiodozinc(II)

In the title compound, $\left[\mathrm{ZnI}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}\right)_{2}\right]$, the Zn atom is located on a twofold axis and is coordinated in a distorted tetrahedral fashion by two I atoms and, via the N atoms, two aniline molecules. Molecules pack in a layer with the aromatic groups facing each other. A hydrogen-bonding network comprising $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ bonds extends parallel to the $b c$ plane.

Comment

During the course of investigations focusing on the crystal engineering of organic-inorganic hybrid materials the title compound, (I), was crystallized. Its geometric parameters are compared here with those of previously reported analogues.

(I)

In (I), the asymmetric unit contains half a molecule, with the Zn atom located on a twofold rotation axis. The Zn atom is coordinated by two I atoms and by two N atoms of the aniline molecules in a distorted tetrahedral arrangement, as shown in Fig. 1.

The Zn -I bond length of 2.5850 (19) \AA is marginally longer than the bond lengths observed for similar tetrahedral zinc complexes, with values of 2.530 (1) \AA reported for bis(acetonitrile)diiodizinc [(II); Raubacher \& Weller, 1996], 2.557 (1) \AA for diiodobis(1-pyrroline)zinc(II) [(III); Freer et al., 1993], and 2.543 (1) \AA for bis(hexamethylenetetramine)diiodozinc(II) [(IV); Pickardt \& Droas, 1989], as well as 2.553 (2) and 2.551 (1) A found for diiododipyridinezinc(II) [(V); Le Querler et al., 1977]. The $\mathrm{Zn}-\mathrm{N}$ bond length of 2.071 (3) \AA in (I) falls within the range of equivalent values in the aforementioned structures, i.e. 2.038 (4) \AA for (II), 2.029 (7) and 2.025 (7) \AA for (III), 2.097 (3) \AA for (IV), and

Figure 1
The molecular structure of (I), showing the atomic numbering scheme, with displacement ellipsoids drawn at the 50% probability level [symmetry code: (') $-x, y, \frac{1}{2}-z$].

Packing diagram, viewed along the b axis.
2.05 (1) and 2.06 (1) \AA for (V).

The $\mathrm{I}-\mathrm{Zn}-\mathrm{I}$ angle of $113.71(6)^{\circ}$ is smaller than corresponding angles reported for related structures. In addition, the $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ angle is $112.65(18)^{\circ}$, indicating a small distortion from ideal tetrahedral coordination.

The atoms constituting the aromatic ring and atom N1 are coplanar, with an r.m.s. deviation of $0.004 \AA$. The dihedral angle between the two aromatic rings is $82.91(13)^{\circ}$.

In the crystal structure, discrete molecules pack in layers with the aromatic groups facing each other, as shown in Fig. 2. The planes through the aromatic groups are parallel to the $a b$ plane. However, no $\pi-\pi$ stacking interactions are observed, the closest centroid-to-centroid distance being 5.232 (6) \AA. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bond interactions are also present in the structure. Thus, each N atom interacts with three I atoms through one normal (through $\mathrm{H} 0 a$) and one bifurcated (through H0b) hydrogen bond; see Table 1. As a result of these interactions, a hydrogen-bonding network, extending parallel to the $b c$ plane, is formed.

Experimental

Benzylammonium iodide was prepared by the dropwise addition of HI (47%, Acros Organics) to a solution of benzylamine (99%, Saarchem) in chloroform. The resulting precipitate was filtered off. The title compound, (I), was synthesized by dissolving stoichiometric amounts of benzylammonium iodide and $\mathrm{ZnI}_{2}(98+\%$, Aldrich) (molar ratio $2: 1$) in water. The solution was heated slightly and allowed to cool to room temperature. Brown single crystals (m.p. $469-470 \mathrm{~K}$) formed on evaporation at room temperature.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{ZnI}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\right]} \\
& M_{r}=505.42 \\
& \text { Monoclinic, } C 2 / c \\
& a=25.073(13) \AA \\
& b=5.147(4) \AA \\
& c=13.296(12) \AA \\
& \beta=115.64(5) \AA \\
& V=1547(2) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

Data collection

Oxford Excalibur2 diffractometer $\omega-2 \theta$ scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.142, T_{\text {max }}=0.189$
6914 measured reflections
2462 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.110$
$S=0.96$
2462 reflections
78 parameters

1839 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=31.9^{\circ}$
$h=-35 \rightarrow 36$
$k=-7 \rightarrow 5$
$l=-19 \rightarrow 19$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0596 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=1.90 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.42 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 0 a \cdots \mathrm{I}^{\mathrm{i}}$	0.90	2.97	$3.804(4)$	154
$\mathrm{~N}-\mathrm{H} 0 b \cdots \mathrm{I}^{\mathrm{ii}}$	0.90	3.12	$3.936(5)$	152
$\mathrm{~N}-\mathrm{H} 0 b \cdots \mathrm{I}^{\mathrm{iii}}$	0.90	3.32	$3.769(4)$	114

Symmetry codes: (i) $x, y-1, z$; (ii) $x,-y, \frac{1}{2}+z$; (iii) $-x, y-1, \frac{1}{2}-z$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.90 \AA$, and were refined using a riding model, with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}$ (parent atom). The maximum electron-density peak is $2.02 \AA$ from the N atom and $2.31 \AA$ from the Zn atom, i.e. in a chemically non-sensible position. The minimum electron-density peak is located $1.30 \AA$ from the I atom.

Data collection: CrysAlis CCD (Oxford Diffraction Ltd, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction Ltd, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The author acknowledges funding received for this work from the University of KwaZulu-Natal Research Office and the National Research Foundation (GUN:2054350).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Freer, A. A., McDermott, G., Melville, J. C., Robins, D. J. (1993). Acta Cryst. C49, 2115-2117.
Le Querler, P. J. F., Borel, M. M. \& Leclaire, A. (1977). Acta Cryst. B33, 22992300.

Oxford Diffraction Ltd. (2003). CrysAlis CCD and CrysAlis RED. Version 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Pickardt, J. \& Droas, P. (1989). Acta Cryst. C45, 360-363.
Raubacher, F. \& Weller, F. (1996). Z. Kristallogr. 211, 576.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

